Glucose can exist in both a straight-chain and ring form
Carbohydrates
taken from Wikipedia
Carbohydrates are straight-chain aldehydes or ketones with many hydroxyl groups that can exist as straight chains or rings. Carbohydrates are the most abundant biological molecules, and fill numerous roles, such as the storage and transport of energy (starch, glycogen) and structural components (cellulose in plants, chitin in animals).[6] The basic carbohydrate units are called monosaccharides and include galactose, fructose, and most importantly glucose. Monosaccharides can be linked together to form polysaccharides in almost limitless ways.[10]
Nucleotides
The polymers DNA and RNA are long chains of nucleotides. These molecules are critical for the storage and use of genetic information, through the processes of transcription and protein biosynthesis.[6] This information is protected by DNA repair mechanisms and propagated through DNA replication. A few viruses have an RNA genome, for example HIV, which uses reverse transcription to create a DNA template from its viral RNA genome.[11] RNA in ribozymes such as spliceosomes and ribosomes is similar to enzymes as it can catalyze chemical reactions. Individual nucleosides are made by attaching a nucleobase to a ribose sugar. These bases are heterocyclic rings containing nitrogen, classified as purines or pyrimidines. Nucleotides also act as coenzymes in metabolic group transfer reactions.[12]
Carbohydrates
taken from Wikipedia
Carbohydrates are straight-chain aldehydes or ketones with many hydroxyl groups that can exist as straight chains or rings. Carbohydrates are the most abundant biological molecules, and fill numerous roles, such as the storage and transport of energy (starch, glycogen) and structural components (cellulose in plants, chitin in animals).[6] The basic carbohydrate units are called monosaccharides and include galactose, fructose, and most importantly glucose. Monosaccharides can be linked together to form polysaccharides in almost limitless ways.[10]
Nucleotides
The polymers DNA and RNA are long chains of nucleotides. These molecules are critical for the storage and use of genetic information, through the processes of transcription and protein biosynthesis.[6] This information is protected by DNA repair mechanisms and propagated through DNA replication. A few viruses have an RNA genome, for example HIV, which uses reverse transcription to create a DNA template from its viral RNA genome.[11] RNA in ribozymes such as spliceosomes and ribosomes is similar to enzymes as it can catalyze chemical reactions. Individual nucleosides are made by attaching a nucleobase to a ribose sugar. These bases are heterocyclic rings containing nitrogen, classified as purines or pyrimidines. Nucleotides also act as coenzymes in metabolic group transfer reactions.[12]
Tidak ada komentar:
Posting Komentar